Functions calculates averageness/distinctiveness as each template's distance from sample average

calc_avg(data)

Arguments

data

Facefuns object or three-dimensional array of dimensions p, k (2 or 3), and n (minimum = 2)

Value

Returns tibble with distinctiveness and averageness (reversed distinctiveness) scores

Examples

data(LondonSet_aligned) data(mirroredlandmarks) calc_avg(LondonSet_aligned)
#> # A tibble: 102 x 3 #> id dist avg #> <chr> <dbl> <dbl> #> 1 001 0.0879 0.0597 #> 2 002 0.0650 0.0826 #> 3 003 0.0608 0.0867 #> 4 004 0.0701 0.0774 #> 5 005 0.0700 0.0775 #> 6 006 0.0631 0.0844 #> 7 007 0.105 0.0425 #> 8 008 0.0777 0.0699 #> 9 009 0.0997 0.0479 #> 10 010 0.0671 0.0805 #> # … with 92 more rows